Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140076

RESUMO

Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. Crucially, smart responsive hydrogels can modulate drug release and eliminate pathological factors by changing their properties or structures in response to internal or external stimuli, such as pH, enzymes, light, and electricity. These stimuli can also be used to trigger antibacterial responses, angiogenesis, and cell proliferation to enhance wound healing. In this review, we introduce the synthesis and principles of smart responsive hydrogels, describe their design and applications for chronic wound healing, and discuss their future development directions. We hope that this review will inspire the development of smart responsive hydrogels for chronic wound healing.

2.
Asian J Pharm Sci ; 18(4): 100827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37588993

RESUMO

Nano-targeted delivery systems have been widely used for breast tumor drug delivery. Estrogen receptors are considered to be significant drug delivery target receptors due to their overexpression in a variety of tumor cells. However, targeted ligands have a significant impact on the safety and effectiveness of active delivery systems, limiting the clinical transformation of nanoparticles. Phytoestrogens have shown good biosafety characteristics and some affinity with the estrogen receptor. In the present study, molecular docking was used to select tanshinone IIA (Tan IIA) among phytoestrogens as a target ligand to be used in nanodelivery systems with some modifications. Modified Tan IIA (Tan-NH2) showed a good biosafety profile and demonstrated tumor-targeting, anti-tumor and anti-tumor metastasis effects. Moreover, the ligand was utilized with the anti-tumor drug Dox-loaded mesoporous silica nanoparticles via chemical modification to generate a nanocomposite Tan-Dox-MSN. Tan-Dox-MSN had a uniform particle size, good dispersibility and high drug loading capacity. Validation experiments in vivo and in vitro showed that it also had a better targeting ability, anti-tumor effect and lower toxicity in normal organs. These results supported the idea that phytoestrogens with high affinity for the estrogen receptor could improve the therapeutic efficacy of nano-targeted delivery systems in breast tumors.

3.
Biomed Pharmacother ; 164: 114928, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263164

RESUMO

Chemo-photothermal/photodynamic synergistic therapy is a new effective cancer treatment method to overcome the limitations of single chemotherapy. However, the limited low photothermal conversion efficiency, the hypoxic tumor microenvironment, and premature leakage of the drug constrain their clinical applications. To address these challenges, an all-in-one biodegradable polydopamine-coated UiO-66 framework nanomedicine (DUPM) was developed to co-deliver the drug doxorubicin hydrochloride (DOX) and the excellent photothermal material MoOx nanoparticles (NPs). The results showed that DUPM exhibited good physicochemical stability and efficiently accumulated tumor tissues under pH-, glutathione-, and NIR-triggered drug release behaviour. Of note, the synthesized MoOx NPs endowed DUPM with self-supporting oxygen production and generated more reactive oxygen species (1O2 and·OH), besides, it induces Mo-mediated redox reaction to deplete excessive glutathione thus relieving tumor hypoxia to enhance PDT, further improving synergistic therapy. Meanwhile, DUPM showed strong absorption in the near-infrared range and high photothermal conversion efficiency at 808 nm (51.50%) to realize photoacoustic imaging-guided diagnosis and treatment of cancer. Compared with monotherapy, the in vivo anti-tumor efficacy results showed that DUMP exerted satisfactory tumor growth inhibition effects (94.43%) with good biocompatibility. This study provides a facile strategy to develop intelligent multifunctional nanoparticles with tumor hypoxia relief for improving synergistic therapy and diagnosis against breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Técnicas Fotoacústicas , Fotoquimioterapia , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Hipóxia Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Glutationa , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral
4.
Int J Nanomedicine ; 18: 3047-3068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312934

RESUMO

Background: Subcellular organelle targeted nano-formulations for cancer treatment are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. The nucleus and mitochondria, as the main subcellular organelles, are the significant organelles responsible for maintaining cell operation and metabolism. They can be involved in many essential physiological and pathological processes such as cell proliferation, organism metabolism, intracellular transportation, and play a critical role in regulating cell biology. Meanwhile, breast cancer metastasis is one of the leading causes of death in breast cancer patients. With the development of nanotechnology, nanomaterials have been widely used in tumor therapy. Methods: We designed a subcellular organelle targeted nanostructured lipid carriers (NLC) to deliver paclitaxel (PTX) and gambogic acid (GA) to tumor tissues. Results: Due to the surface of NLC being modified by subcellular organelle targeted peptide, the PTX and GA co-loaded NLC can accurately release PTX and GA in tumor cells. This property makes NLC able to easy to enter tumor site and target the specific subcellular organelle. The modified NLC can efficiently inhibit the growth of 4T1 primary tumor and lung metastasis, which may be related to the down-regulation of matrix metalloproteinase-9 (MMP-9) and BCL-2 levels, up-regulation of E-cadherin level, and antagonized PTX-induced increase of C-C chemokine ligand 2 (CCL-2) levels by GA. Meanwhile, the synergistic anti-tumor effect of GA and PTX has also been verified in vitro and in vivo experiments. Conclusion: The subcellular organelle targeted peptide modified PTX+GA multifunctional nano-drug delivery system has a good therapeutic effect on tumors, and this study provides significant insights into the role of different subcellular organelles in inhibiting tumor growth and metastasis and inspires researchers to develop highly effective cancer therapeutic strategies through subcellular organelle targeted drugs.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Paclitaxel/farmacologia , Núcleo Celular , Lipídeos , Melanoma Maligno Cutâneo
5.
Genes (Basel) ; 15(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38254930

RESUMO

Improving the efficiency of hens and extending the egg-laying cycle require maintaining high egg production in the later stages. The ovarian follicles, as the primary functional units for ovarian development and oocyte maturation, play a crucial role in regulating the continuous ovulation of hens. The egg production rate of laying hens is mostly affected by proper follicle growth and ovulation in the ovaries. The objective of this study was to identify the key genes and signaling pathways involved in the development of ovarian follicles in Taihang hens through transcriptome screening. In this study, RNA sequencing was used to compare and analyze the transcriptomes of ovarian follicles at four developmental stages: small white follicles (SWF), small yellow follicles (SYF), F5 follicles, and F2 follicles, from two groups: the high continual production group (H-Group) and the low continual production group (L-Group). A total of 24 cDNA libraries were constructed, and significant differential expression of 96, 199, 591, and 314 mRNAs was detected in the SWF, SYF, F5, and F2 follicles of the H and L groups, respectively. Based on the results of GO and KEGG enrichment analyses, each stage of follicle growth possesses distinct molecular genetic features, which have important effects on follicle development and significantly promote the formation of continuous production traits through the biosynthesis of steroid hormones, cytokine-cytokine receptor interaction, and neuroactive ligand-receptor interaction. Additionally, through STEM analysis, we identified 59 DEGs, including ZP4, KCNH1, IGFs, HMGA2, and CDH1, potentially associated with follicular development within four significant modules. This study represents the first transcriptome investigation of follicles in hens with high and low egg-producing characteristics at four crucial developmental stages. These findings provide important molecular evidence for understanding the regulation of follicular development and its variations.


Assuntos
Galinhas , Folículo Ovariano , Animais , Feminino , Galinhas/genética , Ovário , Ovulação/genética , Citocinas
6.
Anal Cell Pathol (Amst) ; 2021: 6668947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239803

RESUMO

Epstein-Barr virus-latent membrane protein 1 (EBV-LMP1) was associated with lymphoma, but its specific mechanism is still controversial. The study is aimed at studying the regulation of lymphoma resistance by EBV-LMP1 through the MEK1/2/Nrf-2 signaling pathway. First, LMP1 was knocked down in EBV-positive SNK-6 cells and overexpressed in EBV-negative KHYG-1 cells. First, we found that overexpression of LMP1 significantly promoted the resistance of KHYG-1 cells to cisplatin (DDP), which was related to increased autophagy in the cells. In contrast, knockdown of LMP1 expression in SNK-6 cells promoted cellular sensitivity to DDP and reduced the autophagy of cells after DDP treatment. Moreover, specific inhibition of autophagy in KHYG-1 cells significantly attenuated the resistance to DDP caused by overexpression of LMP1, but treatment with rapamycin in SNK-6 cells significantly promoted the autophagy in the cells. Subsequently, overexpression of LMP1 promoted the activation of the MEK1/2-Nrf2 pathway in KYHG-1 cells, whereas knockdown of LMP1 in SNK-6 cells inhibited the activation of the MEK1/2-Nrf2 pathway. Inhibition of MEK1/2/Nrf-2 blocked the promoting effects of LMP1 on lymphoma cell resistance. In conclusion, EBV-LMP1 promotes cell autophagy after DDP treatment by activating the MEK1/2/Nrf-2 signaling pathway in lymphoma cells, thus, enhancing the resistance of lymphoma cells to DDP.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma de Células T , Autofagia , Cisplatino/farmacologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Transdução de Sinais
7.
Front Chem ; 9: 821426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155383

RESUMO

As a natural compound, gambogic acid (GA) emerged a shining multi-target antitumor activity in a variety of tumors. Whereas its poor solubility and non-specific effect to tumor blocked the clinical application of this drug. Herein, we reported a simple and effective strategy to construct liposome modified with nuclear targeted peptide CB5005N (VQRKRQKLMPC) via polyethylene glycol (PEG) linker to decrease the inherent limitations of GA and promote its anti-tumor activity. In this study, liposomes were prepared by thin film hydration method. The characterization of formulations contained particle size, Zeta potential, morphology and encapsulation efficiency. Further, in vitro cytotoxicity and uptake tests were investigated by 4T1 and MDA-MB-231 cells, and nuclear targeting capability was performed on MDA-MB-231 cells. In addition, the in vivo antitumor effect and biological distribution of formulations were tested in BALB/c female mice. The GA-loaded liposome modified by CB5005N showed small size, good uniformity, better targeting, higher anti-tumor efficiency, better tumor inhibition rate and lower toxicity to normal tissues than other groups. In vitro and in vivo research proved that CB5005N-GA-liposome exhibited excellent anti-tumor activity and significantly reduced toxicities. As a result, CB5005N-GA-liposome nano drug delivery system enhanced the tumor targeting and antitumor effects of GA, which provided a basis for its clinical application.

8.
Cancer Manag Res ; 12: 8801-8811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061576

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) has been indicated in the development of some tumors, including lymphoma. However, the potential role of latent membrane protein 1 (LMP1) encoded by EBV in the tumorigenesis of lymphoma remains debated. Herein, we examined the function of LMP1 in lymphoma. METHODS: The expression of LMP1 was downregulated or upregulated in EBV negative cell line SNT-8 and positive cell line KHYG-1, respectively. Subsequently, the cell viability, apoptosis, as well as the expression patterns of p53, mouse double minute 2 (MDM2), B-cell CLL/lymphoma 2 (Bcl-2) and NF-κB were evaluated. Next, the binding relationship between MDM2 and p53 along with p53 ubiquitination in cells was tested by Western blot and co-immunoprecipitation. Finally, the effects of LMP1 on lymphoma cell growth through p53, Bcl-2 and NF-κB pathways were verified by functional rescue experiments. RESULTS: Overexpression of LMP1 promoted KHYG-1 cell growth and inhibited cell apoptosis. Moreover, LMP1 upregulation significantly enhanced the activation of NF-κB pathway, thus increasing MDM2 binding to p53, leading to p53 ubiquitination and degradation as well as Bcl-2 expression enhancement. Further inhibition of the NF-κB pathway or Bcl-2 expression significantly weakened the promotive role of LMP1 in the growth of KHYG-1 cells. CONCLUSION: EBV-LMP1 promoted the p53 ubiquitination and degradation by activating NF-κB signaling pathway and the following binding of MDM2 and p53 in cells to enhance Bcl-2 expression, thus promoting the growth of lymphoma cells and inhibiting cell apoptosis.

9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 43(1): 24-7, 2012 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-22455125

RESUMO

OBJECTIVE: To investigate the immune reconstitution by the transplantation of human umbilical cord blood CD34+ cells in the NOD/SCID mouse. METHODS: Mononuclear cells (MNC) were isolated from human fresh cord blood and CD34+ hematopoietic stem cells were selected by magnetic activated cell sorting method. The selected cells were transplanted via tail vein injection into 16 NOD/SCID mice after sublethal whole-body irradiation. Four mice were sacrificed respectively at 4th, 6th, 8th and 10th week after the transplantation, the harvested spleen and peripheral blood cells were used to cell phenotype analysis and humoral immune analysis, respectively. There were 14 mice in another two groups, 7 mice did not receive the transplantation after irradiation, 7 were used as blank control (no irradiation, no transplantation). RESULTS: The mice without transplantation all died within 2 weeks after irradiation. The survival rate of the mice with transplantation was 37.5% at 6th week after the irradiation, while the survival rate of blank control was 100%. At 4th, 6th, 8th and 10th week, the percentage of human CD45+ cells in transplantation group were 4.7 +/- 1.23, 9.22 +/- 2.07, 12.34 +/- 2.38, 8.14 +/- 2.36, respectively, and the percentage of CD19+ B lymphocytes were 1.07 +/- 0.50, 2.17 +/- 0.95, 3.34 +/- 0.90, 1.67 +/- 0.90, respectively. 10 weeks after the transplantation, human CD19+ B lymphocytes distribution were found in the transplanted mice spleen. CONCLUSION: The human-mouse chimeric immune model can be built in irradiated NOD/ SCID mice by the transplantation of human cord blood CD34+ cells. CD34+ cell differentiation declined with time, which might be due to the lack of appropriate cytokines.


Assuntos
Antígenos CD34 , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Imunidade Humoral/imunologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Heterólogo , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA